Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis.

نویسندگان

  • Philip B Brewer
  • Elizabeth A Dun
  • Brett J Ferguson
  • Catherine Rameau
  • Christine A Beveridge
چکیده

During the last century, two key hypotheses have been proposed to explain apical dominance in plants: auxin promotes the production of a second messenger that moves up into buds to repress their outgrowth, and auxin saturation in the stem inhibits auxin transport from buds, thereby inhibiting bud outgrowth. The recent discovery of strigolactone as the novel shoot-branching inhibitor allowed us to test its mode of action in relation to these hypotheses. We found that exogenously applied strigolactone inhibited bud outgrowth in pea (Pisum sativum) even when auxin was depleted after decapitation. We also found that strigolactone application reduced branching in Arabidopsis (Arabidopsis thaliana) auxin response mutants, suggesting that auxin may act through strigolactones to facilitate apical dominance. Moreover, strigolactone application to tiny buds of mutant or decapitated pea plants rapidly stopped outgrowth, in contrast to applying N-1-naphthylphthalamic acid (NPA), an auxin transport inhibitor, which significantly slowed growth only after several days. Whereas strigolactone or NPA applied to growing buds reduced bud length, only NPA blocked auxin transport in the bud. Wild-type and strigolactone biosynthesis mutant pea and Arabidopsis shoots were capable of instantly transporting additional amounts of auxin in excess of endogenous levels, contrary to predictions of auxin transport models. These data suggest that strigolactone does not act primarily by affecting auxin transport from buds. Rather, the primary repressor of bud outgrowth appears to be the auxin-dependent production of strigolactones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strigolactone Inhibition of Branching Independent of Polar Auxin Transport.

The outgrowth of axillary buds into branches is regulated systemically via plant hormones and the demand of growing shoot tips for sugars. The plant hormone auxin is thought to act via two mechanisms. One mechanism involves auxin regulation of systemic signals, cytokinins and strigolactones, which can move into axillary buds. The other involves suppression of auxin transport/canalization from a...

متن کامل

Interactions between auxin and strigolactone in shoot branching control.

In Arabidopsis (Arabidopsis thaliana), the carotenoid cleavage dioxygenases MORE AXILLARY GROWTH3 (MAX3) and MAX4 act together with MAX1 to produce a strigolactone signaling molecule required for the inhibition of axillary bud outgrowth. We show that both MAX3 and MAX4 transcripts are positively auxin regulated in a manner similar to the orthologous genes from pea (Pisum sativum) and rice (Oryz...

متن کامل

Roles for auxin, cytokinin, and strigolactone in regulating shoot branching.

Many processes have been described in the control of shoot branching. Apical dominance is defined as the control exerted by the shoot tip on the outgrowth of axillary buds, whereas correlative inhibition includes the suppression of growth by other growing buds or shoots. The level, signaling, and/or flow of the plant hormone auxin in stems and buds is thought to be involved in these processes. ...

متن کامل

Effect of Strigolactone on Polar Auxin Transport and Plant Architecture

Physiologically, branching is regulated by a complex interplay of hormones including auxin, cytokinin and recently discovered strigolactone. The study is focused on the effect of strigolactone on shoot branching of pea (Pisum sativum L.) in relation with polar auxin transport, which has an essential role in apical dominance. After decapitation of the dominant apex lateral buds are released from...

متن کامل

Sucrose is an early modulator of the key hormonal mechanisms controlling bud outgrowth in Rosa hybrida

Sugar has only recently been identified as a key player in triggering bud outgrowth, while hormonal control of bud outgrowth is already well established. To get a better understanding of sugar control, the present study investigated how sugar availability modulates the hormonal network during bud outgrowth in Rosa hybrida. Other plant models, for which mutants are available, were used when nece...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 150 1  شماره 

صفحات  -

تاریخ انتشار 2009